

Assouad Dimension of Invariant Measures for Place Dependent Probabilities

Roope Anttila

11.5.2022

Research Unit of Mathematical Sciences

Assouad dimension of measures

Recall the definition of the Assouad dimension of a measure.

Definition

Let μ be a finite Borel probability measure fully supported on a metric space X. The Assouad dimension of μ is defined as

$$\begin{split} \dim_{\mathcal{A}} \mu &= \inf \left\{ s > 0 \colon \exists C > 0, \text{ s.t. } \forall x \in X, 0 < r < R \\ &\frac{\mu(B(x,R))}{\mu(B(x,r))} \leq C \left(\frac{R}{r}\right)^s \right\} \end{split}$$

Roope Anttila

University of Oulu

1.5.2022 (1/0

An IFS $\{\varphi_i\}_{i=1}^N$ is a conformal iterated function system if

An IFS $\{\varphi_i\}_{i=1}^N$ is a conformal iterated function system if (C1) There is an open, bounded and connected set $\Omega \subset \mathbb{R}^d$, and a compact set $X \subset \Omega$ with non-empty interior, such that

 $\varphi_i(X)\subset X,$

for all $i \in \{1, ..., N\}$.

An IFS $\{\varphi_i\}_{i=1}^N$ is a conformal iterated function system if (C1) There is an open, bounded and connected set $\Omega \subset \mathbb{R}^d$, and a compact set $X \subset \Omega$ with non-empty interior, such that

 $\varphi_i(X) \subset X,$

for all $i \in \{1, ..., N\}$.

(C2) For each $i \in \{1, ..., N\}$, the map φ_i is a contractive $C^{1+\varepsilon}$ -diffeomorphism, and $\varphi_i \colon \Omega \to \Omega$ is conformal, that is, $\varphi'_i(x)$ is a similarity for all $x \in \Omega$.

An IFS $\{\varphi_i\}_{i=1}^N$ is a conformal iterated function system if (C1) There is an open, bounded and connected set $\Omega \subset \mathbb{R}^d$, and a compact set $X \subset \Omega$ with non-empty interior, such that

 $\varphi_i(X) \subset X,$

for all $i \in \{1, ..., N\}$.

(C2) For each $i \in \{1, ..., N\}$, the map φ_i is a contractive $C^{1+\varepsilon}$ -diffeomorphism, and $\varphi_i \colon \Omega \to \Omega$ is conformal, that is, $\varphi'_i(x)$ is a similarity for all $x \in \Omega$.

The limit set *F* of this IFS is called a self-conformal set.

Example

Figure: An example of a self-conformal set

Roope Anttila

University of Oulu

11.5.2022 (3/

Place dependent probabilities

We choose for each $i \in \{1, ..., N\}$ a Hölder continuous function $p_i: X \to (0, 1)$, which satisfy $\sum_{i=1}^{N} p_i(x) \equiv 1$ and consider the probability measures μ satisfying the equation

$$\int f(x)d\mu(x) = \sum_{i=1}^N \int p_i(x)f \circ \varphi_i(x)d\mu(x),$$

for $f \in C(X)$ where C(X) are the continuous real valued functions on X.

Place dependent probabilities

We choose for each $i \in \{1, ..., N\}$ a Hölder continuous function $p_i: X \to (0, 1)$, which satisfy $\sum_{i=1}^{N} p_i(x) \equiv 1$ and consider the probability measures μ satisfying the equation

$$\int f(x)d\mu(x) = \sum_{i=1}^N \int p_i(x)f \circ \varphi_i(x)d\mu(x),$$

for $f \in C(X)$ where C(X) are the continuous real valued functions on X.Measures that satisfy this equation are called **invariant measures for place dependent probabilities**. Under our assumptions, this measure exists and is unique and we denote it by μ .

Let $\Sigma = \{1, \ldots, N\}^{\mathbb{N}}$ and denote $i = (i_1, i_2, \ldots) \in \Sigma$. For $i \in \Sigma$, let $i|_n = (i_1, \ldots, i_n)$.

Let $\Sigma = \{1, \ldots, N\}^{\mathbb{N}}$ and denote $i = (i_1, i_2, \ldots) \in \Sigma$. For $i \in \Sigma$, let $i|_n = (i_1, \ldots, i_n)$. Let $\pi \colon \Sigma \to F$ be the natural projection defined by

$$\{\pi(\mathbf{i})\} = \bigcap_{n=1}^{\infty} \varphi_{\mathbf{i}|_n}(F).$$

Let $\Sigma = \{1, \ldots, N\}^{\mathbb{N}}$ and denote $i = (i_1, i_2, \ldots) \in \Sigma$. For $i \in \Sigma$, let $i|_n = (i_1, \ldots, i_n)$. Let $\pi \colon \Sigma \to F$ be the natural projection defined by

$$\{\pi(\mathtt{i})\} = \bigcap_{n=1}^{\infty} \varphi_{\mathtt{i}|_n}(F).$$

For $i \in \Sigma$ and $n \in \mathbb{N}$ we let

$$p_{\mathbf{i}|_n}(\sigma^n \mathbf{i}) = \prod_{k=1}^n p_{i_k}(\pi(\sigma^k \mathbf{i})).$$

Let $\Sigma = \{1, \ldots, N\}^{\mathbb{N}}$ and denote $i = (i_1, i_2, \ldots) \in \Sigma$. For $i \in \Sigma$, let $i|_n = (i_1, \ldots, i_n)$. Let $\pi \colon \Sigma \to F$ be the natural projection defined by

$${\pi(i)} = \bigcap_{n=1}^{\infty} \varphi_{i|_n}(F).$$

For $i \in \Sigma$ and $n \in \mathbb{N}$ we let

$$p_{\mathbf{i}|_n}(\sigma^n \mathbf{i}) = \prod_{k=1}^n p_{i_k}(\pi(\sigma^k \mathbf{i})).$$

Denote by $P(\Sigma) \subset \Sigma$ the set of periodic points of Σ .

Let $\Sigma = \{1, \ldots, N\}^{\mathbb{N}}$ and denote $i = (i_1, i_2, \ldots) \in \Sigma$. For $i \in \Sigma$, let $i|_n = (i_1, \ldots, i_n)$. Let $\pi \colon \Sigma \to F$ be the natural projection defined by

$$\{\pi(\mathtt{i})\} = \bigcap_{n=1}^{\infty} \varphi_{\mathtt{i}|_n}(F).$$

For $i \in \Sigma$ and $n \in \mathbb{N}$ we let

$$p_{\mathbf{i}|_n}(\sigma^n \mathbf{i}) = \prod_{k=1}^n p_{i_k}(\pi(\sigma^k \mathbf{i})).$$

Denote by $P(\Sigma) \subset \Sigma$ the set of periodic points of Σ . For $i \in P(\Sigma)$ with period of length *n*, we let

$$\overline{p}_{\mathtt{i}} = p_{\mathtt{i}|_n}(\sigma^n \mathtt{i}), \text{ and } \quad |\varphi'_{\mathtt{i}}| = |\varphi'_{\mathtt{i}|_n}(\pi(\mathtt{i}))|.$$

Results

Theorem (A. 2022)

Let μ be an invariant measure for place dependent probabilities fully supported on a strongly separated self-conformal set F. Then

$$\dim_{\mathsf{A}} \mu = \sup_{\mathbf{i} \in P(\Sigma)} \frac{\log \overline{p}_{\mathbf{i}}}{\log |\varphi'_{\mathbf{i}}|}.$$

Results

Theorem (A. 2022)

Let μ be an invariant measure for place dependent probabilities fully supported on a strongly separated self-conformal set F. Then

$$\dim_{\mathsf{A}} \mu = \sup_{\mathbf{i} \in P(\Sigma)} \frac{\log \overline{p}_{\mathbf{i}}}{\log |\varphi'_{\mathbf{i}}|}.$$

This generalizes a result by Fraser and Howroyd (2020):

Results

Theorem (A. 2022)

Let μ be an invariant measure for place dependent probabilities fully supported on a strongly separated self-conformal set F. Then

$$\dim_{\mathsf{A}} \mu = \sup_{\mathbf{i} \in P(\Sigma)} \frac{\log \overline{p}_{\mathbf{i}}}{\log |\varphi'_{\mathbf{i}}|}.$$

This generalizes a result by Fraser and Howroyd (2020):

Corollary

Let μ be a self-similar measure satisfying the SSC. Then

$$\dim_{\mathsf{A}} \mu = \max_{i=1,\dots,N} \frac{\log p_i}{\log r_i}.$$

